One-piece tapered piston with piston rings for sealing

Pump HD-A2FO

Motor HD-A2FM Sizes 5~500

Motor HD-A2FE Sizes 28~355

Sizes $5\sim500$ Series 6 Nominal pressure 400 bar Maximum pressure 450 bar

- Fixed pump with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in an open circuit.
- For use in mobile and stationary applications, the flow is proportional to the drive speed and displacement.
- The drive shaft bearings are designed for the bearing service life requirements usually encountered in these areas.
- High power density,Small dimensions,High total efficiency,Economical design, One-piece tapered piston with piston rings for sealing.

Series 6 Nominal pressure 400 bar Maximum pressure 450 bar

- Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits.
- For use in mobile and stationary applications, The output speed is dependent on the flow of the pump and the displacement of the motor.
- Finely graduated sizes permit far-reaching adaptation to the drive case
- High power density, Small dimensions, High total efficiency, Good starting characteristics, Economical design, One-piece tapered piston with piston rings for sealing.

Series 6 Nominal pressure 400 bar Maximum pressure 450 bar

- Fixed plug-in motor with axial tapered piston rotary group of bent-axis design, for hydrostatic drives in open and closed circuits.
- Far-reaching integration in mechanical gearbox due to recessed mounting flange located in the center of the case (extremely space-saving construction)
- Small dimensions, High total efficiency, Complete unit, ready-assembled and tested, Easy to install, simply plug into the mechanical gearbox, No configuration specifications to be observed when installing.

HD-A2FO/M/E Axial Piston Fixed Pump & Motor

Contents

	tents	
No	Content	Page
А	HD-A2FO Fixed pump, for hydrostatic drives in an open circuit.	
1	Ordering Code	3
2	Technical Data	5
3	Dimensions 5~500	10
4	Installation Instructions	22
В	HD-A2FM Fixed motor, for hydrostatic drives in open and closed circuits.	
1	Ordering Code	23
2	Technical Data	26
3	Dimensions 5~500	31
4	Attachment	51
5	Installation Instructions	59
С	HD-A2FE Fixed plug-in motor, for hydrostatic drives in open and closed circuits.	
1	Ordering Code	60
2	Technical Data	62
3	Dimensions 28~355	68
4	Attachment	72
5	Installation Instructions	80
D	HD-A2FO/M/E pump/motorTechnical Information	
1	Technical Information	81
2	Installation Instructions	82

HD-/	HD-A2FO Axial Piston Fixed Pump Ordering C																		0	rderir	ng Code	
■ O	rderi	ng Coc	le Fo	r Stan	dard	Pro	gram															
HD	-		A2F	-		0	56	1	6		1	R	-	V	/	Α	В	05	5	-		
0		1	2	3		4	5		6		7	8		ç	9 1	10 1	1	12]	13		
0	Man	ufacture	er																			Code
	HUA	ADE HY	DRAU	ILIC 华	≦德液	Ŧ																HD
1	Oil t	ypes / S	pecifi	cations	;											5~	200	2	250	355	500	Code
	Mineral oil without code											-										
	HFD for sizes 250~500 only in combination with long-life bearings L Image: Comparison of the second												-									
	HFE	B,HFC		Size 5	~200	v	vithout	t code											-	-	-	-
	Size 250~500 only in combination with long-life bearings L -												E									
2	Axial piston unit 5 10/12/16 23/28/32 45 56/63 80/90 107/125 160/180 200~500												Code									
	Ben	t-axis de	esign,	fixed																E]	A2F
3	Drive shaft bearing 5~200 250 355 500 C											Code										
	Standard bearingwithout code											-										
	Long-life bearing - ■ ■ Long-life bearing											L										
4	Ope	ration m	node				5	10/12/	/16	23/28	/32	45	56/63	3	80/90	107/1	25 ⁻	160/ [,]	180	200~500		Code
	Purr	np, oper	circu	it				•		•		•			•			•]	0
5	Disp	laceme	nt		5	10/	12/16	23/28	3/32	45	56/	63	80/90	10	07/125	160/18	30 2	00	250	355	500	Code
	≌V	' _{gmax} (ci	m ³ /r)		5	10/	12/16	23/28	3/32	45	56/	63	80/90	10	07/125	160/18	30 2	00	250	355	500	-
6	Seri	es																		5~:	500	Code
	Seri	es 6																			1	6
7	Inde	x											ę	5	10~	-180	200	2	250	355	500	Code
	Size	10~18	80											-			-		-	-	-	1
	Size	200												-		-			-	-	-	3
	Size	5 and 2	<u>2</u> 50~:	500									I		,	-	-					0
8	Dire	ction of	rotatio	on																		Code
	Viev	ved on o	drive s	haft									C	ock	wise (fo	orward	dextra	al)				R
													C	ount	ter-cloc	kwise (rever	se le	ft-ha	nded)		L
9	Sea	ling mat	erial																	5~	500	Code
	FKM	1 (Fluoro	o-rubb	er)																	I	V
	NBR(Nitrile-rubber),Shaft seal FKM (Fluoro-rubber)												Р									

HD-A2FO Axial Piston Fixed Pump Ordering Cod											ng Code								
Ordering Code For Standard Program																			
HD	-		A2F			C	56	/ 6	6	1	R	-	v		A	В	05	-	
0		1	2	3	4	,	5	6		7	8		9	1	0	11	12	13	
10	Drive	shaft		5	10/12	2 16	23/28	32	45	56	63	80	90	107	125	160	180/200	250/355/500	Code
	Splin	ed	Ι	-	-	-			-	-					-			-	А
	shaft		Ш	-		-		-		•	-		-		-		-	•	Z
	Paral	lel	Ι	-	-		-	•	-		•	•	•				•	-	В
	shaft		П	-		-		-	•		-		-		-		-	•	Р
	Conic	cal sha	aft ¹⁾		-	-	-	-	-	-	-	-	-	-	-	-	-	-	С
11	Mour	nting fl	ange													5	~250	355~500	Code
	ISO 3	3019-2	2	2 ho	le												•	-	В
				4 ho	le												-	•	н
12	Work	ing po	ort										5	10~	~16	23	3~250	355~500	Code
	SAE f	lange	portB(/	A) at s	side,S	at rea	r,Fastei	ning th	read,	metric	:		-				•	-	05
	Threa	ded p	ortB(A) at si	de,S a	at rear,	metric 1	hread					-	I			-	-	06
	SAE f	lange	portB(A) and	d S at	rear,Fa	astening	g threa	ad,me	tric.			-		-		-		11
Threaded portB(A) and S at rear, metric thread.											07								
13 Standard / special version Code											Code								
	Stand	dard v	ersion	with	out co	de													-
	Stand	dard v	ersion wi	th inst	tallatio	n varia	ants												Y
	Spec	ial ver	sion																S
D No	ote:1) C	onical s	shaft with t	hreade	d pin a	nd wood	druff key	(DIN 68	388). TI	he torq	ue mus	t be tra	ansmitte	ed via t	he tape	ered pre	ess fit.		
	-	= Optir	mization	scherr	ne (sh	orter d	elivery	time)											
	-	= Avail	able																
	-	= On re	eauest																
		- Not a	availahle																
	-	- NOL C																	

- Shaft seal...Permissible pressure loading
- The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure).
- The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature.
- For a higher differential pressure at reduced speed, see diagram.
 Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.
- The case pressure must be equal to or higher than the ambient pressure.
- Static characteristic
- □ Sizes 10 to 200

The values are valid for an ambient pressure P_{abs} = 1 bar

- Temperature range
- The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C
- For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.
- Direction of flow

Direction of rotation, viewed on drive shaft	Direction of flow
clockwise (R)	S → B
counter-clockwise (L)	S → A

- Long-life bearing
- □ Sizes 250~500
- For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.
- Bearing and case flushing via port U is recommended.

Flushing flow...recommended

Sizes	250	355	500
q _{v flush} (I/min)	10	16	16

Ports

Ports	Port for	Diagram
A, B	Working port	B (A)
S	Suction port	
т	Drain port	
U(Sizes 250~500)	Flushing port	T S U

Working pressure range

D Working pressure range valid when using hydraulic fluids based on mineral oils

Pressure at service	line port A o	r B		Definition				
Nominal pressure F	nom	Size 5	315 bar (absolute)	The nominal pressure corresponds to the maximum design pressure				
		Size 10~200	400 bar (absolute)					
		Size 250~500	350 bar (absolute)					
Maximum pressure	P _{max}	Size 5	350 bar (absolute)	The maximum pressure corresponds to the maximum operating pressure				
		Size 10~200	450 bar (absolute)	within the single operating period.				
		Size 250~500	400 bar (absolute)	The sum of the single operating periods must not exceed the total operating				
	Single ope	rating period	10 s	period.				
	Total opera	ating period	300 h					
Minimum pressure	P _{min}		25 bar (absolute)	Minimum pressure at the high-pressure side (A or B) which is required in				
high-pressur	e side			order to prevent damage to the axial piston unit.				
Rate of pressure ch	ange R _{A max}		16000 bar/s	Maximum permissible rate of pressure rise and reduction during a pressure				
Without pres	sure-relief va	alve		change over the entire pressure range.				
Pressure at suction	port S (inlet))						
Minimum pressure	P _{S min}		0.8 bar (absolute)	Minimum pressure at suction port S (inlet) that is required in order to avoid				
				damage to the axial piston unit. The minimum pressure depends on the				
				rotational speed and displacement of the axial piston unit.				
Maximum pressure	P _{S max}		30 bar (absolute)	For higher inlet pressure, please consult us.				

✤ Note:Values for other hydraulic fluids, please contact us

Rate of pressure change R_{A max}

Time t [s]

Pressure defnition

D Total operating period = $t_1 + t_2 + t_3 + t_n$

Table of values

□ Theoretical values, without considering efficiencies and tolerances, values rounded off

Technical Data	A2FO			5	10	12	16	23	28	32	45	56	63	80
Displacement		Va	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Rotational	maximum	nnom	rom	5600	3150	3150	3150	2500	2500	2500	2240	2000	2000	1800
speed ¹⁾		n _{max} ²⁾	rom	8000	6000	6000	6000	4750	4750	4750	4250	3750	3750	3350
Flow	at n _{nom}	Q _V	l/min	27.6	32	38	50	57	70	80	102	112	126	145
Power	⊿P=350 bar	P	KW	14.5 ⁴⁾	19	22	29	33	41	47	60	65	74	84
	⊿P=400 bar	P	KW	-	22	25	34	38	47	53	68	75	84	96
Torque ³⁾	⊿P=350 bar	T	Nm	24.7 ⁴⁾	57	67	89	128	157	178	254	313	351	448
at V _a and	∠P=400 bar	т	Nm	-	66	76	102	146	179	204	290	357	401	512
	21 - 100 bui	V	1	0.12	0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Weight	200102	m	Ka	2.5	6	6	6	0.20	0.20	0.20	13.5	18	18	23
weight	арргох	111	Ng	2.5	0	0	0	9.0	9.5	9.5	15.5	10	10	23
Technical Data	A2FO			90	107	125	100	100	200	250	055	500		
				30	107	125	160	160	200	250	355	500		
Displacement		Vg	cm ³	90	106.7	125	160.4	180	200	250	355	500 500		
Displacement Rotational	maximum	V _g n _{nom}	cm ³ rpm	90 1800	106.7 1600	125 125 1600	160.4 1450	180 180 1450	200 200 1550	250 250 1500	355 355 1320	500 500 1200		
Displacement Rotational speed ¹⁾	maximum	V _g n _{nom} n _{max} ²⁾	cm ³ rpm rpm	90 1800 3350	106.7 1600 3000	125 125 1600 3000	160.4 1450 2650	180 1450 2650	200 200 1550 2750	250 250 1500 1800	355 355 1320 1600	500 500 1200 1500		
Displacement Rotational speed ¹⁾ Flow	maximum at n _{nom}	V _g n _{nom} n _{max} ²⁾ q _v	cm ³ rpm rpm I/min	90 1800 3350 162	106.7 1600 3000 171	125 125 1600 3000 200	160.4 1450 2650 233	180 180 1450 2650 261	200 200 1550 2750 310	250 250 1500 1800 375	355 355 1320 1600 469	500 500 1200 1500 600		
Displacement Rotational speed ¹⁾ Flow Power	maximum at n _{nom} ⊿P=350 bar	$\frac{N_{g}}{N_{max}}$ $\frac{N_{max}}{Q_{v}}$ P	cm ³ rpm rpm I/min KW	90 1800 3350 162 95	106.7 1600 3000 171 100	125 1600 3000 200 117	160.4 1450 2650 233 136	180 180 1450 2650 261 152	200 200 1550 2750 310 181	250 250 1500 1800 375 219	355 355 1320 1600 469 273	500 500 1200 1500 600 350		
Displacement Rotational speed ¹⁾ Flow Power	maximum at n _{nom} ⊿P=350 bar ⊿P=400 bar	V _g <u>n_{nom}</u> <u>n_{max}²⁾</u> <u>q_v</u> P P	cm ³ rpm rpm l/min KW KW	90 1800 3350 162 95 108	106.7 1600 3000 171 100 114	125 1600 3000 200 117 133	160.4 1450 2650 233 136 155	180 180 1450 2650 261 152 174	200 200 1550 2750 310 181 207	250 250 1500 1800 375 219 -	355 355 1320 1600 469 273 -	500 500 1200 1500 600 350 -		
Displacement Rotational speed ¹⁾ Flow Power Torque ³⁾	maximum at n _{nom} ⊿P=350 bar ⊿P=400 bar ⊿P=350 bar	$\frac{V_g}{n_{nom}}$ $\frac{n_{max}^{2}}{q_v}$ P P T	cm ³ rpm rpm l/min KW KW Nm	90 1800 3350 162 95 108 501	106.7 1600 3000 171 100 114 594	125 1600 3000 200 117 133 696	160.4 1450 2650 233 136 155 893	180 180 1450 2650 261 152 174 1003	200 200 1550 2750 310 181 207 1114	250 250 1500 375 219 - 1393	355 355 1320 1600 469 273 - 1978	500 500 1200 1500 600 350 - 2785		
Displacement Rotational speed ¹⁾ Flow Power Torque ³⁾ at V_0 and	maximum $at n_{nom}$ at P=350 bar at P=400 bar at P=350 bar at P=350 bar at P=400 bar	$\frac{V_g}{n_{nom}}$ $\frac{n_{max}^2}{q_v}$ $\frac{q_v}{P}$ $\frac{P}{T}$ T	cm ³ rpm rpm l/min KW KW KW Nm	90 1800 3350 162 95 108 501 573	106.7 1600 3000 171 100 114 594 679	125 1600 3000 200 117 133 696 796	160.4 1450 2650 233 136 155 893 1021	180 180 1450 2650 261 152 174 1003 1146	200 200 1550 2750 310 181 207 1114 1273	250 250 1500 375 219 - 1393 -	355 355 1320 1600 469 273 - 1978 -	500 500 1200 1500 600 350 - 2785 -		
Displacement Rotational speed ¹⁾ Flow Power Torque ³⁾ at V _g and Case volume	maximum at n_{nom}	$\frac{V_g}{n_{nom}}$ $\frac{n_{nom}}{n_{max}}^{2)}$ $\frac{q_v}{P}$ P T T V	cm ³ rpm //min KW KW Nm Nm I	90 1800 3350 162 95 108 501 573 0.55	106.7 1600 3000 171 100 114 594 679 0.8	125 1600 3000 200 117 133 696 796 0.8	160 160.4 1450 2650 233 136 155 893 1021 1.1	180 180 1450 2650 261 152 174 1003 1146 1.1	200 200 1550 2750 310 181 207 1114 1273 2.7	250 250 1500 375 219 - 1393 - 2.5	355 355 1320 1600 469 273 - 1978 - 3.5	500 500 1200 1500 600 350 - 2785 - 4.2		

D Note

4

1) The values are applicable

✤ for an absolute pressure P_{abs}=1 bar at suction port S

2) Maximum speed (limiting speed) with increased inlet pressure pabs at suction port S3) Torque without radial force, with radial force

- within the optimum viscosity range from $V_{opt} = 16$ to 36 mm²/s 4)
 - Torque at ∠P = 315 bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet.

Maximum speed...limiting speed

ID-A2FO Axial Piston Fixed Pump Technical Data														
Technical Data														
D Permissible radial ar	nd axial loading	g on the drive	shaft											
Technical Data A	2FO	<i>.</i>		5	5 ³⁾	10	10	12	12	16	23	23	28	28
Drive shaft		Φ	mm	12	12	20	25	20	25	25	25	30	25	30
Max.radial force ¹⁾	Fa_	F _{q max}	KN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4	5.7	5.4
at distance a		а	mm	12	12	16	16	16	16	16	16	16	16	16
(from shaft collar)	a													
permissible torque		T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146	179	179
permissible pressure		⊿ P _{perm}	bar	315	315	400	400	400	400	400	400	400	400	400
Maximum axial force 2)	<u>т</u>	+F _{ax max}	Ν	180	180	320	320	320	320	320	500	500	500	500
	F _{ax} ±≓≓∰	- F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0	0
	ЧЪ													
Permissible axial force per	bar operating	±F _{ax max/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2	5.2	5.2
pressure														
					45	50	50 ⁴	50	00	0.0	0.04)			
Define all off		•		32	45	56	56 7	56	63	80	80 %	80	90	
Drive shaft		Ψ	mm	30	30	30	30	35	35	35	35	40	40	
		F _{q max}	KIN mm	5.4 16	1.0	9.5	1.0	9.1	9.1	20	20	20	20	
		a		10	10	10	10	10	10	20	20	20	20	
		т	Nm	204	200	257	204	257	401	512	100	510	572	
			hor	204	290	400	294	400	401	400	200	400	400	
Maximum axial force ²⁾		∠r _{perm}	N	500	400 630	400 800	800	800	400 800	400	1000	400	400	
	F+→=	- F	N	0	030	000	000	000	000	0	0	0	0	
	· ax – – – – – – – – – – – – – – – – – –	- I ax max	IN	0	0	0	0	0	0	0	0	0	0	
Permissible axial force per	bar operating	±F _{ax max/bar}	N/bar	5.2	7.0	8.7	8.7	8.7	8.7	10.6	10.6	10.6	10.6	
pressure														
Technical Data A	2F0	•		107	107	125	160	160	180	200	250	355	500	
Drive shaft		Ψ	mm	40	45	45	45	50	50	50	50 4 0 ⁵⁾	60 4 5 ⁵⁾	70 1 0 ⁵⁾	
		Fq max	KIN	13.0	14.1	14.1	18.1	18.3	18.3	20.3	1.2 "	1.5 7	1.9 7	
at distance a		a	mm	20	20	20	25	25	25	25	41	52.5	52.5	
	- > 4	т	Nm	670	670	706	1021	1021	11.46	1070				
			hor	400	400	190	1021	1021	1140	1273	-	-	-	
Maximum axial force ²⁾		∠ F perm	N	400	400	400	400	400	400	400	-	-		
	E+→⊒	- F	N	0	0	0	0	0	0	0	2000	2000	0	
	· ax – – – –	- ⊢ax max	IN	0	0	U	U	0	U	U	0	0	0	
Permissible avial force per	har operating	+F -	N/bar	12.0	12.0	12.0	16.7	16.7	16.7	16.7	-	-	-	
	bai operating	-i ax max/bar	in/Dal	12.9	12.9	12.3	10.7	10.7	10.7	10.7	-	-	-	
pressure														

Note

1) With intermittent operation

4) Restricted technical data only for splined shaft

2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

3) Conical shaft with threaded pin and woodruff key (DIN 6888)

Note:Influence of the direction of the permissible axial force

= Increase in service life of bearings +Fax max

- Fax max = Reduction in service life of bearings (avoid)

5) When at a standstill or when axial piston unit operating in nonpressurized conditions. Higher forces are permissible when under pressure, please contact us

- Effect of radial force
- By selecting a suitable direction of radial force Fq, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings.
- **D** Recommended position of mating gear is dependent on direction of rotation. Examples

	Toothed gear drive	V-belt output
Size	Ψ _{opt}	Ψ _{opt}
5~180	± 70°	± 45°
200~500	± 45°	± 70°

Determining the operating characteristics

 $V_g \bullet n \bullet \eta_v$

1000

2π•T•n

60000

Vg

Δp

n

 η_{ml}

 η_t

= η_v

= Differential pressure in bar

Volumetric efficiency

= Mechanical-hydraulic efficiency

= Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

= Speed in rpm

 $q_v =$

Displacement per revolution in cm³

 $20 \cdot \pi \cdot \eta_{mh}$

 $q_v \bullet \Delta p$

 $600 \cdot \eta_t$

 $V_g \bullet \Delta p$ [Nm]

Power

[L/min]

[kW]

Size 5...Dimensions in mm

Dert plate 07...Threaded ports A/B and S at side

with threaded pin and woodruff key 3×5 tapering

22.5

Ports

Ports	Port for	Standard ⁶⁾	Size ³⁾	P _{Max} [bar] ⁵⁾	State ⁸⁾
B(A)	Working port	DIN 3852	M18 x 1.5 deep 12	350	0
S	Suction port	DIN 3852	M22 x 1.5 deep 14	30	0
T _{1,} T ₂	Drain port	DIN 3852	M10 x 1 deep 8	3	X/O ⁷⁾

Note

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

4) Thread according to DIN 3852, maximum tightening torque 30 Nm

- 6) The spot face can be deeper than specified in the appropriate standard
- 7) Depending on the installation position, T_1 or T_2 must be connected
- 8) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

⁵⁾ Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

Size 10, 12, 16...Dimensions in mm

D Port plate 06...Threaded ports A/B at side and threaded port S at rear

Ports	Port for	Standard *	Size ²	P _{Max} [bar] ³	State '
B(A)	Working port	DIN 3852	M22 x 1.5 deep 14	350	0
S	Suction port	DIN 3852	M33 x 2 deep 18	30	0
$T_{1,}T_{2}$	Drain port	DIN 3852	M12 x 1.5 deep 12	3	X/O ⁶⁾
R	Air bieed	DIN 3852	M8 x 1 deep 8	3	Х

Note

1) Center bore according to DIN 332 (thread according to DIN 13)

2) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 4) The spot face can be deeper than specified in the appropriate standard

6) Depending on the installation position, T_1 or T_2 must be connected

Ports	Port for	Standard	Size -/	P _{Max} [bar] ⁹	State 7
B(A)	Working port	SAE J518 ⁵⁾	1/2"	450	0
	Fastening thread	DIN13	M8 x 1.25 deep 15		
S	Suction port	SAE J518 5)	3/4"	30	0
	Fastening thread	DIN13	M10 x 1.5 deep 17		
T _{1,} T ₂	Drain port	DIN 3852 ⁴⁾	M16 x 1.5 deep 12	3	O/X ⁶⁾
R	Air bieed	DIN 3852 4)	M10 x 1 deep 12	3	Х

Note

2) For the maximum tightening torques the general instructions must be observed.

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

CTURE 277

D Ports					
Ports	Port for	Standard	Size ²⁾	P _{Max} [bar] ³⁾	State 7)
B(A)	Working port	SAE J518 5)	3/4"	450	0
	Fastening thread	DIN13	M10 x 1.5 deep 17		
S	Suction port	SAE J518 5)	1"	30	0
	Fastening thread	DIN13	M10 x 1.5 deep 17		
T _{1,} T ₂	Drain port	DIN 3852 4)	M18 x 1.5 deep 12	3	O/X ⁶⁾
R	Air bieed	DIN 3852 4)	M12 x 1.5 deep 12	3	Х

Note

1) Center bore according to DIN 332 (thread according to DIN 13)

2) For the maximum tightening torques the general instructions must be observed.

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

Ē

33

6) Depending on the installation position, T_1 or T_2 must be connected

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

7) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

ø35

60

Ports	Port for	Standard	Size ²⁾	P _{Max} [bar] ³⁾	State 7)
B(A)	Working port	SAE J518 ⁵⁾	3/4"	450	0
	Fastening thread	DIN13	M10 x 1.5 deep 17		
S	Suction port	SAE J518 5)	1"	30	0
	Fastening thread	DIN13	M10 x 1.5 deep 17		
T ₁ , T ₂	Drain port	DIN 3852 ⁴⁾	M18 x 1.5 deep 12	3	O/X ⁶⁾
R	Air bieed	DIN 3852 ⁴⁾	M12 x 1.5 deep 12	3	Х

Note

2) For the maximum tightening torques the general instructions must be observed.

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

Note

2) For the maximum tightening torques the general instructions must be observed.

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

B(A)	Working port	SAE J518 ⁵⁾	1"	450	0
Size 107	Fastening thread	DIN13	M12 x 1.75 deep 17		
B(A)	Working port	SAE J518 5)	1-1/4"	450	0
Size 125	Fastening thread	DIN13	M14 x 2 deep 19		
S	Suction port	SAE J518 ⁵⁾	1-1/2"	30	0
	Fastening thread	DIN13	M12 x 1.75 deep 20		
T _{1,} T ₂	Drain port	DIN 3852 4)	M18 x 1.5 deep 12	3	O/X ⁶⁾
R	Air bieed	DIN 3852 4)	M14 x 1.5 deep 12	3	Х

Note

2) For the maximum tightening torques the general instructions must be observed.

3) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

R
Note

T₁, T₂

1) Center bore according to DIN 332 (thread according to DIN 13)

Drain port

Air bieed

2) For the maximum tightening torques the general instructions must be observed.

DIN 3852 4)

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

Х

6) Depending on the installation position, T_1 or T_2 must be connected

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

7) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

3

3

M22 x 1.5 deep 14

M14 x 1.5 deep 12

Note

Keep this in mind when selecting measuring devices and fittings.

2) Center bore according to DIN 332 (thread according to DIN 13)

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

3) For the maximum tightening torques the general instructions must be observed.

¹⁾ Momentary pressure spikes may occur depending on the application.

⁴⁾ The spot face can be deeper than specified in the appropriate standard

1 0110		Otaridard	OIEO	, Max [boar]	Oldio
B(A)	Working port	SAE J518 ⁵⁾	1-1/4"	400	0
	Fastening thread	DIN13	M14 x 2 deep 19		
S	Suction port	SAE J518 5)	2-1/2"	30	0
	Fastening thread	DIN13	M12 x 1.75 deep 17		
$T_{1,} T_{2}$	Drain port	DIN 3852 4)	M22 x 1.5 deep 14	3	X/O ⁶⁾
U	Air bieed	DIN 3852 4)	M14 x 1.5 deep 12	3	Х

Note

1) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

2) Center bore according to DIN 332 (thread according to DIN 13)

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on the installation position, T_1 or T_2 must be connected

3) For the maximum tightening torques the general instructions must be observed. 7) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

Note

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

2) Center bore according to DIN 332 (thread according to DIN 13)

6) Depending on the installation position, T_1 or T_2 must be connected

3) For the maximum tightening torques the general instructions must be observed.

Note

4) The spot face can be deeper than specified in the appropriate standard

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

2) Center bore according to DIN 332 (thread according to DIN 13)

6) Depending on the installation position, T₁ or T₂ must be connected
7) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

3) For the maximum tightening torques the general instructions must be observed.

A2F Pump & Motor

Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

Installation instructions

General

- During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.
- Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.
- The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T₁, T₂).
- For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.
- To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.
- In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height hS results from the overall loss of pressure; it must not, however, be higher than h_{S max} = 800 mm. The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation and during cold start.
- Installation position
- □ See the following examples 1 to 8
- □ Additional installation positions are available upon request.
- Recommended installation positions 1 and 2

Note

Ins.Positio	n 1	2	3	4	5	6	7	8				
Air bleed	-	-	-	R(U)	L ₁	L ₁	L ₁	R(U)				
Filling	T ₁	T ₂	T ₁	T ₂	T ₁ (L ₁)	T ₂ (L ₁)	T ₁ (L ₁)	T ₂ (L ₁)				
L₁ R	Case drain port Air bleeding port											
U	Bearing flushing / air bleed port											
S	Suction port											
T_1, T_2	Drain port											
SB	Baffle (baf	fle plate)										
h_{tmin}	Minimum	necessai	y immer	sion dep	th (200 n	nm)						
h _{S max}	Maximum	permissi	ble sucti	on heigh	t(800 mn	n)						
a _{min}	When des	igning th	e reserv	oir, ensu	re adequ	ate dista	nce betw	veen				
	the suction	n line and	d the cas	e drain li	ne. This	prevents	the hea	ted,				
	return flow from being drawn directly back into the suction line.											

- Below-reservoir installation (standard)
- Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

- Above-reservoir installation
- Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.
- Recommendation for installation position 8 (drive shaft upward),
 A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the pump housing.

HD-	HD-A2FM Axial Piston Fixed Motor Ordering										ng Code										
O	rderi	ng Co	de For	Stan	dard I	Progra	m														
HD	-		A2F		м	90		/ 6	1		W	-	v	Α	в	01	0			-	
0		1	2	3	4	5	1	6	7		8		9	10	11	12	1 [13	14	15	1
												-									
0	Mar	nufactu	rer																		Code
	HU	ADE HI	/DRAUL	_IC 华	德液日	<u>.</u>															HD
1	Oil	vpes / l	Specific	ations											5	~200		250	355	500	Code
	Min	eral oil		wit	hout c	ode															-
	HF)	fo	or size	es 250	~500 0	only	in comb	ination	with	n long-	life	bearii	ngs L							-
	HFE	3,HFC	S	Size 5	~200.	with	out	code						0				-	-	-	-
			5	Size 25	50~50	0 only	in co	ombinat	ion with	lon	ng-life l	bea	arings	L		-			-		E
2	Avie					F		10/10/10			AE		EC/CO	20/00	107	14.05	1.60	/100	200		Codo
2	Ron		locian f	ived				-	5 23/2	<u>5/32</u>	40		20/03	80/90	107	125	160	-	200	~500	ADE
	Dei		iesign, i	ixeu				•	•		-		•	-							AZF
3	Driv	<mark>e shaft</mark>	bearing												5	~200		250	355	500	Code
	Star	ndard b	earing	with	nout co	ode										•		-	-	-	-
	Long-life bearing - • •											L									
4	4 Operation mode 5 10/12/16 23/28/32 45 56/63 80/90 107/125 160/180 200~500											Code									
	Mot	or													1						М
5	Dis	olaceme	ent		5	10/12/	16	23/28/3	2 45	5	56/63	8	0/90	107/12	5 160/	180	200	250	355	500	Code
	≌ /	/ _{gmax} (c	cm ³ /r)		5	10/12/	16	23/28/3	2 45	5	56/63	8	0/90	107/12	5 160/	′180	200	250) 355	500	-
6	Ser	ies																	5~	·500	Code
	Ser	ies 6																		•	6
7	Inde												5	10	~ 190	2	00	250	255	500	Codo
· ·	Size	→ 10~1	80										-		- 100		-	-	-	-	1
	Size	= 200	00										_		-	_		-	-	-	3
	Size	e 5 and	250~5	00											-		-				0
8	Dire	ection o	f rotatio	n																	Code
0	Viev	wed on	drive sh	aft												bi	direc	tional			W
	0	P																	-	500	
9	Sea	lling ma		(r)															5~	-500	Code
) Shafi	t spal l	EKM (E	luor	o-rubbo	r)											<u> </u>	P
	NDI	(I VIIIII)), O nan	t Sear I				''											-	

HD-/	۹2FN	M Axi	al Pist	on Fi	ixed N	Noto	or												(Orderin	ng Code
■ O	rderir	ng Coo	de For S	Stanc	lard P	rogra	am														
HD	-		A2F		м	9	0	1	6		1	w	-	v	Α	в	010			-	
0		1	2	3	4	5	5		6	7	7	8		9	10	11	12	13	14	15]
																					-
10	Drive	e shaft		5	10/12	16	23	3/28	32	45	56	63	80	90	107	125	160	180/200	250/	355/500	Code
	Splir	ned	I	-	-	-		-		-	-	-	-			-	•	-		-	А
	shaft	t	П	-		-		•	-	•	•	-	•	-	•	-	•	-			Z
	Para	llel		•	•			•		-		•		•		-	•			-	В
	shaft	t		-	•	-		-	-	•	-	-		-	•	-	•	-		•	Р
	Coni	cal sha	aft ¹⁾		-	-		-	-	-	-	-	-	-	-	-	-	-		-	С
11	Mou	nting fla	ange														5	~250	355	5~500	Code
	ISO	3019-2	!	2 ho	le													•		-	В
				4 ho	le													-			н
12	Work	king po	rt					5	10	,12	23	28	45	56	80	107	160	200	250	355	Code
		0.							16			32		63	90	125	180	כ		500	
	SAE	flange	ports			01	0	-		-	•		-	•	-	-	-	-	-	-	010
	A an	d B at i	rear				7	-		-	-	-	-	-	-	-	-	-	-		017
	SAE	flange	ports			02	0	-		-								-		-	020
	A an	d B at s	side, opp	oosite			7	-		-	-	-						-		-	027
							9				-	-	-	•		-	-	-	-	-	029
	Thre	aded p	orts A ar	nd B		03	0	-					-	-	-	-	-	-	-	-	030
	at sid	de, opp	osite					T				1			_				1		
	Thre	aded p	orts A ar	nd B ²⁾		04	0	-			•			•	-	-	-	-		-	040
-	at sid	de and	rear																		
	SAE	flange	ports			10	0	-		-	-							-	-		100
	Aan	d B at I	bottom (same	side)																
	Port	plate w	/ith		BAD	17	1	-		-	-	-	-	-	-		-	-	-	-	171
	1-lev	el pres	sure reli	iet	-	40	8	-		-	-	-	-	-	-		-	-	-	-	178
	vaive		nounting	a (a ³⁾		18	0	-		-	-			-				-	-	-	181
-	Port			ve	DVE	10	0	-		-	-	-	-	-	-			-	-	-	100
	nres	piate w	lief valve	26		19	2	-		-	-								-	-	191
	pies	Sule le		55			<u>_</u>			_	_	-	-	-	-	-	-		_		132
								Val	ves												
							0	Wi	thout	valve	Э										
						Ī	1	Pre	essure	e-reli	ef val	ve (wi	thout	pressu	ure boo	ost fac	lity)				
						Ī	2	Pre	essure	e-reli	ef val	ve (wi	th pre	ssure	boost	facility)				
						Ī	7	Flu	shing	and	boos	st pres	sure	/alve,	mount	ed					
							8	Co	unterl	balar	nce va	alve B	VD/B	VE ³⁾							
						Ī	9	Flu	shing	and	boos	st pres	sure	/alve,	integra	ated					
						-															

HD-A2FM Axial Piston Fixed Motor				Orderii	ng Code
Ordering Code For Standard Program					
HD - A2F M 90 / 6 1 W	V A	B 01	0	-	
	9 10		13	14 15	1
				14 10	1
13 Speed sensors	5~16	23~180	200	250~500	Code
Without speed sensorwithout code					-
Prepared for HDD speed sensor	-	-	-	_	F
HDD speed sensor mounted ⁴⁾	-	-	-	-	н
Prepared for DSA speed sensor	-			-	U
DSA speed sensor mounted ⁴⁾	-	-		_	V
		_	_		
14 Special version					Code
Standard versionwithout code					-
Special version for slew drives					J
15 Standard / special version					Code
Standard versionwithout code					-
Standard version with installation variants, e. g. T ports against stan	dard open or c	losed			Υ
Special version					S
					<u> </u>
1) Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be tra	nsmitted via the ta	apered press fit			
 2) Threaded ports at the sides (sizes 10 to 63) plugged with threaded plugs 2) Specify ordering code of counterbalance value according to data check operatory 					
4) Specify ordering code of sensor according to data sheet separately and observe the	equirements on t	he electronics			
= Optimization scheme (shorter delivery time)					
= Available					
= On request					

- Shaft seal...Permissible pressure loading
- The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure).
- The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature.
- For a higher differential pressure at reduced speed, see diagram.
 Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.
- The case pressure must be equal to or higher than the ambient pressure.
- Static characteristic
- □ Sizes 10 to 200

The values are valid for an ambient pressure P_{abs} = 1 bar

- Temperature range
- The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C
- For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft	Direction of flow
clockwise (R)	A → B
counter-clockwise (L)	B → A

Speed range

- No limit to minimum speed n_{min}. If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values for maximum speed.
- Long-life bearing
- □ Sizes 250~500
- For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.
- Bearing and case flushing via port U is recommended.

Flushing flow...Recommended

Sizes	250	355	500
q _{v flush} (I/min)	10	16	16

Ports

Ports	Port for	Diagram
А, В	Working port	
Т	Drain port	A

Working pressure range

D Working pressure range valid when using hydraulic fluids based on mineral oils

Pressure at service line port A or B			Definition			
Nominal pressure Pnom	Nominal pressure P _{nom} Size 5		The nominal pressure corresponds to the maximum design pressure			
	Size 10~200	400 bar (absolute)				
	Size 250~500	350 bar (absolute)				
Maximum pressure P _{B max}	Size 5	350 bar (absolute)	The maximum pressure corresponds to the maximum operating pressure			
	Size 10~200	450 bar (absolute)	within the single operating period.			
	Size 250~500	400 bar (absolute)	The sum of the single operating periods must not exceed the total operating			
Single operation	ng period	10 s	period.			
Total operating	g period	300 h				
Summation pr	essure (P _A + P _B) P _{Su}	700 bar	The summation pressure is the sum of the pressures at both service			
			line ports (A and B).			
Minimum pressure P _{min}		25 bar (absolute)	Minimum pressure at the high-pressure side (A or B) which is required in			
high-pressure side			order to prevent damage to the axial piston unit.			
Rate of pressure change R _{A max}			Maximum permissible rate of pressure rise and reduction during a pressure			
With integrated pressure-relief valve 9000 bar/s		9000 bar/s	change over the entire pressure range			
Without pressure-r	elief valve	16000 bar/s				

Note:Values for other hydraulic fluids, please contact us

- Minimum pressure...pump mode (inlet)
- To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet).
- The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

- This diagram is valid only for the optimum viscosity range from V_{opt} = 36 to 16 mm²/s.
- Please contact us if these conditions cannot be satisfied.

Table of values

□ Theoretical values, without considering efficiencies and tolerances, values rounded off

		5												
Technical Data	A2FM			5	10	12	16	23	28	32	45	56	63	80
Displacement		Vg	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed 1)	maximum	n _{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
		n _{max} ²⁾	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
Input flow 3)	at n_{nom} and V_g	qv	l/min	49	82	96	128	144	177	202	255	281	315	362
Torque ⁴⁾	⊿ P=350 bar	Т	Nm	24.7 ⁵⁾	57	67	89	128	157	178	254	313	351	448
at V_g and	⊿P=400 bar	Т	Nm	-	66	76	102	146	179	204	290	357	401	512
Case volume		V	I	0.12	0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Weight	approx	m	Kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
Technical Data	A2FM			90	107	125	160	180	200	250	355	500		
Displacement		Va	cm ³	90	106.7	125	160.4	180	200	250	355	500		
Speed ¹⁾	maximum	n _{nom}	rpm	4500	4000	4000	3600	3600	2750	2700	2240	2000		
		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	3000	-	-	-		
Input flow 3)	at n_{nom} and V_{g}	q _v	l/min	405	427	500	577	648	550	675	795	1000		
Torque ⁴⁾	⊿ P=350 bar	Т	Nm	501	594	696	893	1003	1114	1393	1978	2785		
at V_g and	⊿P=400 bar	Т	Nm	573	679	796	1021	1146	1273	-	-	-		
Case volume		V	I	0.55	0.8	0.8	1.1	1.1	2.7	2.5	3.5	4.2		
Weight	approx	m	Kg	23	32	32	45	45	66	73	110	155		

D Note

1) The values are applicable

✤ for an absolute pressure P_{abs}=1 bar at suction port S

within the optimum viscosity range from V_{opt} = 16 to 36 mm²/s

3) Restriction of input flow with counterbalance valve

2) Intermittent maximum speed: overspeed for unload and overhauling processes, t \leq 5 s and $~{\it \Delta}\,P$ \leq 150 bar

4) Torque without radial force, with radial force.

5) Torque at $\triangle P = 315$ bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit.

Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet.

1D-A2FM Axial Piston Fixed Motor Technical Data									l Data					
Technical Data														
D Permissible radial ar	nd axial loading	on the drive	shaft											
Technical Data A	2FM	-		5	5 ³⁾	10	10	12	12	16	23	23	28	28
Drive shaft		Φ	mm	12	12	20	25	20	25	25	25	30	25	30
Max.radial force ¹⁾	F _a _	F _{q max}	KN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4	5.7	5.4
at distance a		а	mm	12	12	16	16	16	16	16	16	16	16	16
(from shaft collar)														
permissible torque		T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146	179	179
permissible pressure		${\it \bigtriangleup P_{perm}}$	bar	315	315	400	400	400	400	400	400	400	400	400
Maximum axial force 2)	ль.	+F _{ax max}	Ν	180	180	320	320	320	320	320	500	500	500	500
	F _{ax} ±≓≓∰	- F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0	0
	ЧР													
Permissible axial force per	bar operating	±F _{ax max/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2	5.2	5.2
pressure														
Technical Data A	2EM			30	45	56	56 ⁴⁾	56	63	80	80 ⁴⁾	80	00	
		Φ.		20	20	20	20	25	25	25	25	40	40	
Max radial force ¹⁾	F	F	KN	54	76	9.5	7.8	9.1	9.1	11.6	11 1	11 /	11 /	
at distance a		l q max	mm	16	18	18	18	18	18	20	20	20	20	
(from shaft collar)	a	u		10	10	10	10	10	10	20	20	20	20	
permissible torque		Tmay	Nm	204	290	357	294	357	401	512	488	512	573	
permissible pressure			bar	400	400	400	330	400	400	400	380	400	400	
Maximum axial force ²⁾		+Fax max	N	500	630	800	800	800	800	1000	1000	1000	1000	
	Fax±≓⋳	- Fax max	N	0	0	0	0	0	0	0	0	0	0	
	ш ЦГ	dx max		-	-	-	-	-	-	-	-	-	-	
Permissible axial force per	bar operating	±Fax max/bar	N/bar	5.2	7.0	8.7	8.7	8.7	8.7	10.6	10.6	10.6	10.6	
pressure														
Technical Data				107	107	105	160	160	100	200	250	255	500	
Drive shaft		Φ	mm	40	107	125	100	50	50	50	50	60	70	
Max radial force ¹⁾	.E.	Fa may	KN	13.6	14.1	14.1	18.1	18.3	18.3	20.3	1.2 ⁵⁾	1.5 ⁵⁾	1.9 ⁵⁾	
at distance a		a	mm	20	20	20	25	25	25	25	41	52.5	52.5	
(from shaft collar)	a	ŭ					20	20	20	20		02.0	02.0	
permissible torque		Tmax	Nm	679	679	796	1021	1021	1146	1273	-	-	-	
permissible pressure		⊿Pperm	bar	400	400	400	400	400	400	400	-	-	-	
Maximum axial force ²⁾		+F _{ax max}	N	1250	1250	1250	1600	1600	1600	1600	2000	2500	-	
	F _{ax} ±≓⊒∰	- F _{ax max}	N	0	0	0	0	0	0	0	0	0	0	
	ш ЦГ													
Permissible axial force per	bar operating	±F _{ax max/bar}	N/bar	12.9	12.9	12.9	16.7	16.7	16.7	16.7	-	-	-	
pressure														
F. 5000.0														

Note

1) With intermittent operation

2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

3) Conical shaft with threaded pin and woodruff key (DIN 6888)

Note:Influence of the direction of the permissible axial force

 $+F_{ax max}$ = Increase in service life of bearings

- F_{ax max} = Reduction in service life of bearings (avoid)

4) Restricted technical data only for splined shaft

5) When at a standstill or when axial piston unit operating in nonpressurized conditions. Higher forces are permissible when under pressure, please contact us

Effect of radial force

- By selecting a suitable direction of radial force Fq, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings.
- **D** Recommended position of mating gear is dependent on direction of rotation. Examples

	Toothed gear drive	V-belt output
Size	Ψ _{opt}	Ψ _{opt}
5~180	± 70°	± 45°
200~500	± 45°	± 70°

direction of rotation Pressure at port B

of rotation Pressure at port A

Pressure at port B

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

 $V_g \bullet \Delta p \bullet \eta_{mh}$

20 • π

$$n = \frac{q_V \cdot 1000 \cdot \eta_v}{V_g}$$

Speed

Power

Т

$$\mathsf{P} = \frac{2 \pi \cdot \mathsf{T} \cdot \mathsf{n}}{60000} = \frac{\mathsf{q}_{\mathsf{v}} \cdot \Delta \mathsf{p} \cdot \eta_{\mathsf{t}}}{600} [\mathsf{kW}]$$

V_g = Displacement per revolution in cm³

- = Differential pressure in bar Δp
- = Speed in rpm n
- Volumetric efficiency η_v
- = Mechanical-hydraulic efficiency η_{mh}
- = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$) nt

Technical Data

[min⁻¹]

[Nm]

D Ports

Ports	Port for	Standard ⁶⁾	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁷⁾
А, В	Working port	DIN 3852	M18 x 1.5 deep 12	350	0
T ₁	Drain port	DIN 3852	M10 x 1 deep 8	3	0
T ₂	Drain port	DIN 3852	M10 x 1 deep 8	3	0

Note

1) To shaft colla

- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) For the maximum tightening torques the general instructions must be observed.
- 4) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

- 5) Thread according to DIN 3852, maximum tightening torque 30 Nm
- 6) The spot face can be deeper than specified in the appropriate standard
- 7) O = Must be connected (plugged on delivery)

- Size 10, 12, 16...Dimensions in mm
- Port plate 030...Threaded ports A and B at side, opposite.

Ports

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port		see port plates	450	
T ₁	Drain port	DIN 3852 ⁵⁾	M12 x 1.5 deep 12	3	X ⁷⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M12 x 1.5 deep 12	3	O ⁷⁾

Note

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

Momentary pressure spikes may occur depending on the application.
 Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

8) O = Must be connected (plugged on delivery)

X = plugged (in normal operation)

■ Size 10, 12, 16...Dimensions in mm

□ Location of the service line ports on the port plates

Plate 03...Threaded ports at side, opposite

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State 5)
03	Α, Β	Working port	DIN 3852 ³⁾	M22 x 1.5 deep 14	450	Х
04	A, B	Working port	DIN 3852 3)	M22 x 1.5 deep 14	450	0

Note

1) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 3) The spot face can be deeper than specified in the appropriate standard

Ports Port for Standard Size³⁾ P_{Max} [bar] 4) State^{8]} Α, Β 450 Working port see port plates X 7) T_1 DIN 3852 5) 3 Drain port M16 x 1.5 deep 12 O ⁷⁾ DIN 3852 5) 3 T_2 Drain port M16 x 1.5 deep 12

Note

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

8) O = Must be connected (plugged on delivery)

X = plugged (in normal operation)

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Working port	SAE J518 4)	1/2"	450	0
		Fastening thread	DIN 13	M8 x 1.25 deep 15		
03	А, В	Working port	DIN 3852 3)	M27 x 2 deep 16	450	Х
04	Α, Β	Working port	DIN 3852 ³⁾	M27 x 2 deep 16	450	0

Note

1) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 3) The spot face can be deeper than specified in the appropriate standard

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

-	
Note	

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

- 8) O = Must be connected (plugged on delivery)
 - X = plugged (in normal operation)

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Working port	SAE J518 4)	3/4"	450	0
		Fastening thread	DIN 13	M10 x 1.5 deep 17		
04	А, В	Working port	DIN 3852 ³⁾	M33 x 2 deep 18	450	0

Note

1) For the maximum tightening torques the general instructions must be observed.

3) The spot face can be deeper than specified in the appropriate standard

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port		see port plates	450	
T ₁	Drain port	DIN 3852 ⁵⁾	M18 x 1.5 deep 12	3	X ⁷⁾
T ₂	Drain port	DIN 3852 5)	M18 x 1.5 deep 12	3	O ⁷⁾

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

- 8) O = Must be connected (plugged on delivery)
 - X = plugged (in normal operation)

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

3) The spot face can be deeper than specified in the appropriate standard

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port		see port plates	450	
T ₁	Drain port	DIN 3852 ⁵⁾	M18 x 1.5 deep 12	3	X ⁷⁾
T ₂	Drain port	DIN 3852 5)	M18 x 1.5 deep 12	3	O ⁷⁾

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

Momentary pressure spikes may occur depending on the application.
 Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

8) O = Must be connected (plugged on delivery)

X = plugged (in normal operation)

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁵⁾
01, 02, 10	А, В	Working port	SAE J518 ⁴⁾	3/4"	450	0
		Fastening thread	DIN 13	M10 x 1.5 deep 17		

Note

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

Momentary pressure spikes may occur depending on the application.
 Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

- 8) O = Must be connected (plugged on delivery)
- X = plugged (in normal operation)

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁵⁾
01, 10	А, В	Working port	SAE J518 4)	1-1/4"	450	0
		Fastening thread	DIN 13	M14 x 2 deep 19		
02	А, В	Working port	SAE J518 4)	1"	450	0
Size107		Fastening thread	DIN 13	M12 x 1.75 deep 17		
02	А, В	Working port	SAE J518 4)	1-1/4"	450	0
Size125		Fastening thread	DIN 13	M14 x 2 deep 19		

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

⁴⁾ Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port		see port plates	450	
T ₁	Drain port	DIN 3852 ⁵⁾	M22 x 1.5 deep 14	3	X ⁷⁾
T ₂	Drain port	DIN 3852 5)	M22 x 1.5 deep 14	3	O ⁷⁾

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

Momentary pressure spikes may occur depending on the application.
 Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

- 8) O = Must be connected (plugged on delivery)
 - X = plugged (in normal operation)

Note

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

Ports

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J518 ⁶⁾	1-1/4"	450	
	Fastening thread	DIN 13	M14 x 2deep 19		
T ₁	Drain port	DIN 3852 5)	M22 x 1.5 deep 14	3	X ⁷⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M22 x 1.5 deep 14	3	O ⁷⁾

Note

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

4) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

5) The spot face can be deeper than specified in the appropriate standard

 Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) Depending on the installation position, T_1 or T_2 must be connected

Ports Port for Standard Size³⁾ P_{Max} [bar] 4) State^{8]} Α, Β Working port see port plates 450 DIN 3852⁵⁾ X ⁷⁾ T₁ 3 Drain port M22 x 1.5 deep 14 O 7) DIN 3852 5) Drain port 3 T_2 M22 x 1.5 deep 14 U DIN 3852 5) M14 x 1.5 deep 12 3 Bearing flushing port Х

Note

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 5) The spot face can be deeper than specified in the appropriate standard

7) Depending on the installation position, T_1 or T_2 must be connected

8) O = Must be connected (plugged on delivery)

X = plugged (in normal operation)

■ Size 250...Dimensions in mm

Location of the service line ports on the port plates

Plate	Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State 5)
01, 02	А, В	Working port	SAE J518 4)	1-1/4"	400	0
		Fastening thread	DIN 13	M14 x 2 deep 19		

Note

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application. 4) Only

Keep this in mind when selecting measuring devices and fittings.

4) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
5) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J518 6)	1-1/2"	450	
	Fastening thread	DIN 13	M16 x 2 deep 21		
T ₁	Drain port	DIN 3852 ⁵⁾	M33 x 2 deep 18	3	X ⁷⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M33 x 2 deep 18	3	O ⁷⁾
U	Bearing flushing port	DIN 3852 5)	M14 x 1.5 deep 12	3	Х
M _A , M _B	Measuring workting pressure	DIN 3852 ⁵⁾	M14 x 1.5 deep 12	400	Х

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 5) The spot face can be deeper than specified in the appropriate standard

 Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) Depending on the installation position, T_1 or T_2 must be connected

1) To shaft colla

- 2) Center bore according to DIN 332 (thread according to DIN 13)
- 3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

- 5) The spot face can be deeper than specified in the appropriate standard
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) Depending on the installation position, T_1 or T_2 must be connected
- 8) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

- Flushing and boost pressure valve
- The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.
- In an open circuit, it is used only for flushing the housing.
- In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.
- Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.
- With port plate 027, the valve is mounted directly on the fixed motor (sizes 45 to 180, 250); with port plate 017 (sizes 355 and 500) on a plate.
- Fixed setting
- Cracking pressure of pressure retaining valve(observe when setting the primary valve)

Sizes 45 to 500, fixed setting.....16 bar

D Switching pressure of flushing piston $\triangle P$

Sizes 45 to 500.....8±1 bar

Schematic

- Flushing flow q_v
- Orifice (throttles with integrated valve) can be used to set the flushing flows as required.
- $= P_{ND} = low pressure P_G = case pressure$
- Standard flushing flows
- □ Flushing and boost pressure valve, mounted

Size	flushing flows q _v l/min	Throttle Φ mm		
45	3.5	1.2		
107, 125	5	1.8		
160, 180	8	2.0		
250	10	2.0		
355, 500	10	2.5		

- With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 l/min. For other flushing flows, please state the required flushing flow when ordering.
- The flushing flow without orifice is approx. 12 to 14 I at low pressure $△ P_{ND} = 25$ bar.
- □ Flushing and boost pressure valve, integrated

Size	flushing flows q _v l/min	Throttle Φ mm
56, 63	6	1.5
80, 90	7.3	1.8

- Pressure-relief valve
- The pressure-relief valves protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the highpressure side to the lowpressure side.
- The pressure-relief valves are only available in combination with port plates 181,191 or 192 (counterbalance valve for mounting to port plate 181)
- Cracking pressure setting range......50 to 420 bar
- With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St}
- □ When ordering, please state in plain text
- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)
- Schematic
- □ Version without pressure boost facility [191]

□ Version with pressure boost facility [192]

Dimensions in mm

Pressure-relief valve

Dimensions in mm

Size	Code	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB16	209	186	25	68	174	102	87	36	66	50.8	23.8	Ф19	M10 deep 17
45	MHDB16	222	198	22	65	187	113	98	36	66	50.8	23.8	Ф19	M10 deep 17
56, 63	MHDB22	250	222	19	61	208	124	105	42	75	50.8	23.8	Ф19	M10 deep 13
80, 90	MHDB22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	Φ25	M12 deep 18
107, 125	MHDB32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	Ф32	M14 deep 19
160, 180	MHDB32	332	301	5	47	285	170	149	53	84	66.7	31.8	Ф32	M14 deep 19
Size	Port A,B	S1 ¹⁾			M _A , M	в ¹⁾		P _{St} ¹⁾						
28, 32	3/4"	M22 x	1.5 deep	14	M20 x	1.5 deep	o 14	G1/4"						
45	3/4"	M22 x	1.5 deep	14	M20 x	1.5 deep	o 14	G1/4"						
56, 63	3/4"	M26 x	1.5 deep	16	M26 x	1.5 deep	o 16	G1/4"			Assembly instructions for port plate with pressure boost facility "192"			
80, 90	1"	M26 x	1.5 deep	16	M26 x	1.5 deep	o 16	6 G1/4" The lock nut must be c 6 G1/4" installing the hydraulic		The lock nut must be counterheld when				
107, 125	1-1/4"	M26 x	1.5 deep	16	M26 x	1.5 deep	o 16			ulic line a	e at the pst port			
160. 180	1-1/4"	M26 x	1.5 deep	16	M30 x	1.5 deer	o 16	G1/4"						

Ports

Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State 3)
А, В	Working port	SAE J518	See above	450	0
S ₁	Supply port (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure port	DIN 3852	See above	450	Х
P _{St}	Pilot pressure port (only with port plate 192)	DIN 3852	See above	30	0

Note

1) For the maximum tightening torques the general instructions must be observed.

3) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

- Counterbalance valve BVD and BVE
- Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.
- If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar
- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set.

- Note
- **D** Ordering example

A2FM90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve and BVE counterbalance valve
- For the design of the brake release valve, we must know for the mechanical park brake
- the pressure at the start of opening
- the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
- the required closing time for a warm device (oil viscosity approx.
 15 mm²/s)

Technical Data

Permissible input flow or pressure in operation with DBV and BVD/BE

Motor	Without valve		Restricted val	lues in operati	ion with DBV		Restricted values in operation with BVD/BVE					
HD-A2FM	Pnom/Pmax	q _{v max}	DBV	Pnom/Pmax	q _v	Plate	BVD/BVE	Pnom/Pmax	q _v	Plate		
Size	bar	l/min	size	bar	l/min	Code	size	bar	l/min	Code		
28	400/450	176	16	350/420	100	181	20	350/420	100	188		
32		201				191, 192	BVD					
45		255										
56		280	22		240				220			
63		315										
80		360										
90		405										
107		427				171				178		
125		500				191, 192						
107		427	32		400	181	25		320	188		
125		500				191, 192	BVD/BVE					
160		577										
180		648										

■ Counterbalance valve BVD and BVE

Dimensions in mm

□ 尺寸数据(mm)

HD-A2FM	Counterbal	ance valve				Dimensio	ons in mm						
Size	Туре	Port A, B	B1	B2	B3	B4(S)	B4(L)	B5	B6	B7			
28, 32	BVD2016	3/4"	209	175	174	142	147	139	98	66			
45	BVD2016	3/4"	222	196	187	142	147	139	98	66			
56, 63	BVD2017	3/4"	250	197	208	142	147	139	98	75			
80, 90	BVD2027	1"	271	207	229	142	147	139	98	75			
107, 125	BVD2028	1"	298	238 251		142	147	139	98	84			
107, 125	BVD2538	1-1/4"	298	239	251	158	163	175	120.5	84			
160, 180	BVD2538	1-1/4"	332	260	285	158	163	175	120.5	84			
107, 125	BVE2538	1-1/4"	298	240	251	167	172	214	137	84			
160, 180	BVE2538	1-1/4"	332	260	285	167	172	214	137	84			
250		On request											

Ports

Ports	Port for	Version	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁴⁾
А, В	Working port		SAE J518	See above	420	0
S	Infeed	BVD20	DIN 3852 3)	M22 x 1.5 deep 14	30	Х
		BVD25, BVE25	DIN 3852 3)	M27 x 2 deep 16	30	х
Br	Brake release, reduce high pressure	L	DIN 3852 3)	M12 x 1.5 deep 12.5	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 3)	M12 x 1.5 deep 12.5	420	х
M _A , M _B	Measuring pressure A, B		ISO 6149 ³⁾	M12 x 1.5 deep 12	420	Х

Note

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

3) The spot face can be deeper than specified in the appropriate standard

4) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

Attachment

Counterbalance valve BVD and BVE

- When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws.
- The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws
 6 screws (1, 2, 3, 4, 5, 8)..... length B1+B2+B3
 2 screws (6, 7).....length B3+B4
- Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme)
- In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table)

Thread		Strength clas	S	Tightening torque						
M6 x 1 tackin	x 1 tacking screw 10.9 15.5 Nm									
M10 x 1.5		10.9		75 Nm						
M12 x 1.75		10.9		130 Nm						
M14 x 2		10.9		205 Nm						
	20.22	56.62	80.00	107 105 107 105						

HD-A2FM	28,32	56,63	80,90	107,125	107,125
Size	45			160,180	
Port plate	18				17
B1 ¹⁾	M10x1.5	M10x1.5	M12x1.75	M14x2	M12x1.75
	deep 17	deep 17	deep 18	deep 19	deep 17
B2	78 ²⁾	68	68	85	68
B3	-	-	-	-	-
B4	M10x1.5	M10x1.5	M12x1.75	M14x2	M12x1.75
	deep 15	deep 15	deep 16	deep 19	deep 17

1) Minimum required thread reach 1 $x\Phi$ thread

2) Including sandwich plate

Installation drawing

Speed sensors

- The versions A2FM...U and A2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.
- On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.
- With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.
- The sensors measures the speed and direction of rotation.
- Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.
- Installation
- - HDD..... with two mounting bolts
- We recommend ordering the A2FM fixed motor complete with sensor mounted

Technical Data

Size			23,28,32	45	56,63	80,90	107,125
Numbe	r of	teeth	38	45	47	53	59
DSA	A	depth _{±0.1}	18.4	18.4	18.4	18.4	18.4
	В	surface	57.9	64.9	69.9	74.9	79.9
	C D		74.5	81.5	86.5	91.5	96.5
			54.7	54.3	61.5	72.5	76.8

Size			160,180	200	250	355	500
Numbe	r of	teeth	67	80	78	90	99
HDD	HDD A depth _{±0.1} B surface		-	-	32	32	32
			-	-	110.5	122.5	132.5
	С		-	-	149	161	171
	D		-	-	82	93	113
DSA	A depth _{±0.1}		18.4	18.4	32	32	32
	В	surface	87.4	100.9	-	-	-
	С		104	117.5	-	-	-
	D		86.8	97.5	-	-	-

- Installation drawing
- □ Version "V" ...Sizes 23 to 200 with DSA sensor

□ Version "H"...Sizes 250 to 500 with HDD sensor

With HDD sensor

Installation instructions

General

- During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.
- Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.
- The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T₁, T₂).
- For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.
- To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.
- In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level.
- Installation position
- □ See the following examples 1 to 8
- □ Additional installation positions are available upon request.
- Recommended installation positions1 and 2
- Note
- With sizes 10 to 200 with installation position "shaft upward", an air-bleed port R is required (state in plain text when orderingspecial version). With sizes 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.

Ins.Position	1	2	3	4	5	6	7	8
Air bleed	-	-	-	R(U)	L ₁	L ₁	L ₁	R(U)
Filling	T ₁	T ₂	T ₁	T ₂	T ₁ (L ₁)	T ₂ (L ₁)	$T_1(L_1)$	T ₂ (L ₁)

L ₁	Case drain port
R	Air bleeding port
U	Bearing flushing / air bleed port
T_1, T_2	Drain port
h_{tmin}	Minimum necessary immersion depth (200 mm)
h _{min}	Minimum required spacing to reservoir bottom (100 mm)

- Below-reservoir installation (standard)
- Below-reservoir installation means that the axial piston unit is
 - installed outside of the reservoir below the minimum fluid level.

- Above-reservoir installation
- Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.
- Recommendation for installation position 8 (drive shaft upward),
 A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

HD-A	HD-A2FE Axial Piston Fixed Motor Ordering													ng Code		
■ Oi	dering Code For S	Standard Progra	am													
HD	- A2F	E 90) /	6	1	w	-	v	Α	в	010			-		
0	1 2	3 4 5	7	6	7	8		9	10	11	12	13	14]	15	4
												L		J		
0	Manufacturer															Code
	HUADE HYDRAULI	 C 华德液压														HD
1	Oil types / Specifications 28~180 250 355													Code		
	Mineral oil without code Image: Code Image: Code														-	
-	HFD for sizes 250~355 only in combination with long-life bearings L														-	
-	HFB,HFC Size 28~180without code Image: Code of the second s															_
	Size 250~355 only in combination with long-life bearings L -															F
	Size ∠50~355 only in combination with long-life bearings L - ■ ■														_	
2	Axial piston unit 28/32 45 56/63 80/90 107/125 160/180 250/355															Code
	Bent-axis design, fix	ed														A2F
3	Drive shaft bearing											28~	~180	250	355	Code
	Standard bearing	without code											•			-
	Long-life bearing												-			L
2	Operation mode					28/32 45 56/63 80/90 107/1					25	160/180	25	0/355	Code	
~	Motor plug-in version	n									20	-	/ 20		F	
	words,plag in voroioi					-			-	-	-		-			-
5	Displacement		28	32	45	56	63	80	90	107	125	160	180	250	355	Code
	≌ V _{gmax} (cm³/r)		28	32	45	56	63	80	90	107	125	160	180	250	355	-
6	Series													28~	-355	Code
	Series 6													I		6
7	Index											28~	~180	250	355	Code
	Size 28~180											20		-	-	1
	Size 250~355												-			0
	0120 200 000													-	-	<u> </u>
8	Direction of rotation															Code
	Viewed on drive sha	aft										bidir	ectional			W
9	Sealing material													28~	-355	Code
	FKM (Fluoro-rubber))												I	•	V
	NBR(Nitrile-rubber),	Shaft seal FKM (F										I		Р		
10			45	56	62	00	00	107	125	160	190	250	255	Codo		
	Splined	1	20	52	40	- 50	-	-	90	107	123			250	- 305	Δ
	chaft		-		-	-	_	-		_	_	_		-	-	7
	Shart			-			-		1 -		-		-			4

ŀ	-10-4	D-A2FE Axial Piston Fixed Motor Ordering Code																				
-		۱ <u>۲</u> ۱																		0	Tuen	
Г	Or	deri	ng Co	de For	Standa	ard Pro	ograr	n										—	<u> </u>		I	7
	HD	-		A2F		E	90	1	6		1	W	-	V	Α	В	010			-		
	0		1	2	3	4	5		6		7	8		9	10	11	12	13	14	L	15	
Γ																						
-	11	Mou	Inting f	lange														28~	×180	250	~355	Code
		ISO	3019-2	2	2 hole)															-	L
L					4 hole)										_	_		-			М
	12	Wor	king po	ort					28	32	45	56	63	80	90	107	125	160	180	250	355	Code
		SAE	flange	e ports			01	0	-	-	-	-	-	-	-	-	-	-	-			010
		A ar	nd B at	rear				7	-	-	-	-	-	-	-	-	-	-	-	-		017
		SAE	E flange	e ports			02	0	-	-	-	-	-	-	-	-	-	-	-			020
		A and B at side, opposite						7	-	-	•						•			•	-	027
								9	-	-	-	•	•		•	-	-	-	-	-	-	029
		SAE	flange	e ports			10	0		•	-	•	-	-	-		-	-		-		100
		A ar	nd B at	bottom	(same s	ide)		7	-	-	-	-	-	-	-	-	-	-	-	-	•	107
		Port	plate	with ¹⁾		BVD	17	1	-	-	-	-	-	-	-		•	-	-	-	-	171
		1-le	vel pre	ssure re	lief			8	-	-	-	-	-	-	-		•	-	-	-	-	178
		valv	es for	mounting	ga		18	1							-		•	•		-	-	181
	-	cou	nterbal	ance val	lve	BVE	18	8	-	-	-	-	-	-	-		•	•		-	-	188
		Port	plate	with			19	1			•						•			-	-	191
L		pres	ssure re	elief valv	es			2												-	-	192
								Va	alves													
								W	ithout	valve)											
1 Pressure-relief valve (without press									ure bo	ost fac	ility)											
							2	Pr	Pressure-relief valve (with pressure boost facility)													
							7	FI	ushin	g and	boos	t pres	sure	valve,	mount	ted						
							8	Co	ounte	rbalar	nce va	alve B'	VD/B	/E ³⁾								
							9	FI	ushin	g and	boos	t pres	sure \	/alve,	integra	ated						

HD-A2FE Axial Piston Fixed Motor Ordering Code																				
Ordering Code For Standard Program																				
HD - A2F E 90 / 6 1 W - V A B 010 -																				
		1	2	3		5	1	6			1		10	11	12	13	1	4	15	
			2	5	-	5	J	U		0	J	5	10		12		<u>'</u> '	-	15	
13	Spe	ed ser	nsors				28	32	45	56	63	80	90	107	125	160	180	250	355	Code
	With	nout sp	beed ser	nsorwi	ithout co	ode		•							-					-
Prepared for HDD speed sensor - - - - - - F													F							
HDD speed sensor mounted $^{2)}$ - - - - - - - HDD speed sensor mounted $^{2)}$													Н							
Prepared for DSA speed sensor B B B B B B B B B B													U							
Prepared for DSA speed sensor \blacksquare <th< td=""><td>V</td></th<>														V						
14	Spo		raion						1	I		1		1				1	1	Codo
14	Star		version	with		<u>,</u>														Code
	Sne			r slew d	rives	5														
	Opo																			
15	15 Standard / special version Co													Code						
	Star	ndard	version.	withe	out code															-
	Star	ndard	version \	with inst	tallation	varia	nts, e	e.g.Tp	ports a	gainst	standa	ard ope	en or c	losed						Ŷ
	Spe	cial ve	ersion																	S
	te																			
1) Sp 2) Sp	ecify	ordering	g code of a	counterba sensor ad	alance va	ive ac o data	corain sheet	separat	a sneet o tely and	observ	y e the re	quireme	ents on t	he elect	ronics					
	,	·	0		0			•	2			•								
		= Ont	imizatio	n schen	ne (shor	ter de	liver	(time)												
]	- Opt	ilabla	r corrori				,												
	1	= Ava	roquost																	
	J	= 011	request	_																
-		= Not	availabi	е																
1																				

- Shaft seal...Permissible pressure loading
- The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure).
- The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature.
- For a higher differential pressure at reduced speed, see diagram.
 Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.
- □ The case pressure must be equal to or higher than the ambient pressure.
- Static characteristic
- □ Sizes 28 to 355

- The values are valid for an ambient pressure P_{abs} = 1 bar
- Temperature range
- The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C
- For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft	Direction of flow
clockwise (R)	A → B
counter-clockwise (L)	B → A

Speed range

- No limit to minimum speed n_{min}. If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values for maximum speed.
- Long-life bearing
- **D** Sizes 250,355
- For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible.
- Bearing and case flushing via port U is recommended.

Ports

Ports	Port for	Diagram
А, В	Working port	
Т	Drain port	A

ton Fixed Motor

Technical Data

Working pressure range

D Working pressure range valid when using hydraulic fluids based on mineral oils

Pressure at ser	vice line port A o	r B		Definition					
Nominal pressu	re P _{nom}	Size 28~180	400 bar (absolute)	The nominal pressure corresponds to the maximum design pressure					
		Size 250~355	350 bar (absolute)						
Maximum pressure P _{B max}		Size 28~180	450 bar (absolute)	The maximum pressure corresponds to the maximum operating pressure					
		Size 250~355	400 bar (absolute)	within the single operating period.					
	Single operation	ng period	10 s	The sum of the single operating periods must not exceed the total operating					
	Total operating	g period	300 h	period.					
	Summation pr	essure (P _A + P _B) P _{Su}	700 bar	The summation pressure is the sum of the pressures at both service					
				line ports (A and B).					
Minimum press	ure P _{min}		25 bar (absolute)	Minimum pressure at the high-pressure side (A or B) which is required in					
high-pres	sure side			order to prevent damage to the axial piston unit.					
Rate of pressure	e change R _{A max}			Maximum permissible rate of pressure rise and reduction during a pressure					
Wit	th integrated pre	ssure-relief valve	9000 bar/s	change over the entire pressure range					
Wit	thout pressure-re	elief valve	16000 bar/s						

Note:Values for other hydraulic fluids, please contact us

- Minimum pressure...pump mode (inlet)
- To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet).
- The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

- This diagram is valid only for the optimum viscosity range from $V_{opt} = 36$ to 16 mm²/s.
- Please contact us if these conditions cannot be satisfied.

Table of values

□ Theoretical values, without considering efficiencies and tolerances, values rounded off)

Technical Data	HD-A2FE			28	32	45	56	63	80	
Displacement		Vg	cm ³	28.1	32	45.6	56.1	63	80.4	
Speed 1)	maximum	n _{nom}	rpm	6300	6300	5600	5000	5000	4500	
		n _{max} ²⁾	rpm	6900	6900	6200	5500	5500	5000	
Input flow 3)	at n_{nom} and V_g	qv	l/min	177	202	255	281	315	362	
Torque ⁴⁾	⊿P=350 bar	Т	Nm	157	178	254	313	351	448	
at V_g and	⊿ P=400 bar	Т	Nm	179	204	290	357	401	512	
Case volume		V	I	0.20	0.20	0.33	0.45	0.45	0.55	
Weight	approx	m	Kg	10.5	10.5	15	18	19	23	
Technical Data	HD-A2FE			90	107	125	160	180	250	355
Displacement		Vg	cm ³	90	106.7	125	160.4	180	250	355
Speed 1)	maximum	n _{nom}	rpm	4500	4000	4000	3600	3600	2700	2240
		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	-	-
Input flow 3)	at n_{nom} and V_g	q _v	l/min	405	427	500	577	648	675	795
Torque ⁴⁾	⊿P=350 bar	Т	Nm	501	594	696	893	1003	1393	1978
at V_g and	⊿ P=400 bar	Т	Nm	573	679	796	1021	1146	-	-
Case volume		V	I	0.55	0.8	0.8	1.1	1.1	2.5	3.5

Note

1) The values are applicable

 \clubsuit within the optimum viscosity range from V_{opt} = 16 to 36 mm²/s

with hydraulic fluid based on mineral oils

2) Intermittent maximum speed:overspeed for unload and overhauling processes,

- $t \leq 5 \text{ s and } \ \varDelta P \leq 150 \text{ bar}$
- 3) Restriction of input flow with counterbalance valve
- 4) Torque without radial force.

Note

- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit.
- Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet.

HD-A2FE Axial Piston Fixed	d Motor										Teo	chnica	al Data
Technical Data													
Permissible radial and axial loadi	ng on the driv	e shaft											
Technical Data HD-A2FE			28	28	32	45	56	56 ³⁾	56	63	80	80 ³⁾	80
Drive shaft	Φ	mm	25	30	30	30	30	30	35	35	35	35	40
Max.radial force ¹⁾	F _{q max}	KN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6	11.1	11.4
at distance a	а	mm	16	16	16	18	18	18	18	18	20	20	20
(from shaft collar)													
permissible torque	T _{max}	Nm	179	179	204	290	357	294	357	401	512	488	512
permissible pressure	⊿ P _{perm}	bar	400	400	400	400	400	330	400	400	400	380	400
Maximum axial force 2)	+F _{ax max}	Ν	500	500	500	630	800	800	800	800	1000	1000	1000
F _{ax} ±≓⊟∰	- F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0	0
¥													
Permissible axial force per bar operating	±F _{ax max/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6	10.6	10.6
pressure													
Technical Data HD-A2FE			90	107	107	125	160	160	180	200	250	355	500
Drive shaft	Φ	mm	40	40	45	45	45	50	50	50	50	60	70
Max.radial force ¹⁾	F _{q max}	KN	11.4	13.6	14.1	14.1	18.1	18.3	18.3	20.3	1.2 ⁴⁾	1.5 ⁴⁾	1.9 ⁴⁾
at distance a	а	mm	20	20	20	20	25	25	25	25	41	52.5	52.5
(from shaft collar)													
permissible torque	T _{max}	Nm	573	679	679	796	1021	1021	1146	1273	-	-	-
permissible pressure	⊿P _{perm}	bar	400	400	400	400	400	400	400	400	-	-	-
Maximum axial force 2)	+F _{ax max}	Ν	1000	1250	1250	1250	1600	1600	1600	1600	2000	2500	
F _{ax} ±≓⊟⊞	- F _{ax max}	Ν	0	0	0	0	0	0	0	0	0	0	0
49													
Permissible axial force per bar operating	±F _{ax max/bar}	N/bar	10.6	12.9	12.9	12.9	16.7	16.7	16.7	16.7	-	-	-
pressure													

1) With intermittent operation

3) Restricted technical data only for splined shaft

2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

4) When at a standstill or when axial piston unit operating in nonpressurized

conditions. Higher forces are permissible when under pressure, please contact us

Note:Influence of the direction of the permissible axial force

+Fax max = Increase in service life of bearings

- F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force

- By selecting a suitable direction of radial force Fq, the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings.
- **D** Recommended position of mating gear is dependent on direction of rotation. Examples

	Toothed gear drive	V-belt output
Size	Ψ _{opt}	Ψ _{opt}
5~180	± 70°	± 45°
200~500	± 45°	± 70°

direction of rotation Pressure at port B

dir of rotation Pressure at port A

rection of rotation
Pressure at
port B

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$

Torque

 $n = \frac{q_V \cdot 1000 \cdot \eta_v}{V_a}$

<u>V_g • Δp • η_{mh}</u> 20 • π

Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} [kW]$$

- Displacement per revolution in cm³ ٧g
- Differential pressure in bar Δp
- Speed in rpm
- = Volumetric efficiency n
- Mechanical-hydraulic efficiency nmh
- = Total efficiency $(\eta_t = \eta_v \cdot \eta_{mh})$ ηt

[L/min]

[min⁻¹]

[Nm]

■ Size 28~180...Dimensions in mm

Dert plate 01...SAE flange ports at bottom

Ports																			
Size	ФA1		ΦA2		A3	1)	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	Ф14	A15	
28, 32	135-0.025		94-0.5		88.	8	15	16	94	114	95	87.1	45	27	91	106	106	5.2	
45	160-0.025		117 ^{+1.}	5 - 2	92.	3	15	18	109	133	106	90	50	31.3	102	119	118	5.2	
56, 63	160-0.025		121.0.	5	92.	3	15	18	122	146	109	90	59	34	107	130	128	5.2	
80, 90	190-0.029		140.3	-0.5	110)	15	20	127	157	123	106	54	41	121	145	138	5.2	
107, 125	200-0.029		152.3	-0.5	122	2.8	15	20	143	178	135	119	58	41	136	157	150	5.2	
160, 180	200-0.029	1	171.6	-0.5	122	2.8	15	20	169	206	134	119.3	75	47	149	185	180	5.2	
Size	B1	B2	2	ФВ3		B4DI	N 13 ²⁾		B5	B6	B7	C1	ΦC2	C3	ΦC4	C5	C6	C7	
28, 32	40.5	18	.2	13		M8 x 1.	25 deep	o 15	59	115	40	188	154	160	14	71	42	13	
45	50.8	23	.8	19		M10 x 1	1.5 deep	o 17	75	147	49	235	190	200	18	82	47.5	15	
56, 63	50.8	23	.8	19		M10 x 1	1.5 deep	o 17	75	147	48	235	190	200	18	82	36	0	
80, 90	57.2	27	.8	25		M12 x 1	1.75 dee	ep 17	84	166	60	260	220	224	22	98	40	0	
107, 125	66.7	31	.8	32		M14 x 2	2 deep 1	9	99	194	70	286	232	250	22	103	40	0	
160, 180	66.7	31	.8	32		M14 x 2	2 deep 1	9	99	194	70	286	232	250	22	104	42	0	
Size	R1			O rin	a ³⁾				Workin	Working port A. B. SAE 1518					Drain port T ₄ DIN 3852 $^{2)}$				
28. 32	10			126 >	y x 4				1/2"	91				M16 x 1 5 deep 12					
45	10			150 >	x 4				3/4"					M18 x 1.5 deep 12					
56.63	10		150 >	x 4				3/4"					M18 x	1.5 deep	12				
80, 90	10			180 >	x 4				1"					M18 x	1.5 deep	12			
107, 125	16			192 >	x 4				1-1/4"	1-1/4"				M18 x 1.5 deep 12					
160 180	12			192	x 4				1-1/4"					M22 x	1.5 deen	14			

D Note:1) To shaft colla 2) For the maximum tightening torques the general instructions must be observed. 3) Not included in the delivery contents

■ Size 28~180...Dimensions in mm

Drive shaft

Size	Splined shaftDIN 5480	W1 ¹⁾	W2	W3	ΦW4	W5	W6
28, 32	A W30 x 2 x 14 x 9g	M10 x 1.5	7.5	22	35	27	35
28	Z W25 x 1.25 x 18 x 9g	M8 x 1.25	6	19	35	28	43
45	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	35	27	35
56, 63	A W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	40	32	40
56	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	40	27	35
80, 90	A W40 x 2 x 18 x 9g	M16 x 2	12	36	45	37	45
80	Z W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	45	32	40
107, 125	A W45 x 2 x 21 x 9g	M16 x 2	12	36	50	42	50
107	Z W40 x 2 x 18 x 9g	M12 x 1.75	9.5	28	50	37	45
160, 180	A W50 x 2 x 24 x 9g	M16 x 2	12	36	60	44	55
160	Z W45 x 2 x 21 x 9g	M16 x 2	12	36	60	42	50

Note:1) Center bore according to DIN 332 (thread according to DIN 13), For the maximum tightening torques the general instructions must be observed.

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J518 ⁶⁾	1-1/4"	450	
	Fastening thread	DIN 13	M14 x 2deep 19		
T ₁	Drain port	DIN 3852 5)	M22 x 1.5 deep 14	3	X ⁷⁾
T ₂	Drain port	DIN 3852 ⁵⁾	M22 x 1.5 deep 14	3	O ⁷⁾

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

4) Momentary pressure spikes may occur depending on the application.

- Keep this in mind when selecting measuring devices and fittings.
- 5) The spot face can be deeper than specified in the appropriate standard
- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) Depending on the installation position, $T_1 \mbox{ or } T_2 \mbox{ must be connected}$
- 8) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

Ports	Port for	Standard	Size ³⁾	P _{Max} [bar] ⁴⁾	State ⁸⁾
А, В	Working port	SAE J518 6)	1-1/4"	400	
	Fastening thread	DIN 13	M14 x 2 deep 22		
T ₁	Drain port	DIN 3852 ⁵⁾	M33 x 2 deep 18	3	X ⁷⁾
T ₂	Drain port	DIN 3852 5)	M33 x 2 deep 18	3	O ⁷⁾
M _A , M _B	Measuring workting pressure	DIN 3852 ⁵⁾	M14 x 1.5 deep 12	400	Х

1) To shaft colla

2) Center bore according to DIN 332 (thread according to DIN 13)

3) For the maximum tightening torques the general instructions must be observed.

 Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) Depending on the installation position, T_1 or T_2 must be connected

⁵⁾ The spot face can be deeper than specified in the appropriate standard

- Flushing and boost pressure valve
- The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.
- In an open circuit, it is used only for flushing the housing.
- In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.
- Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.
- With port plate 027 (sizes 45 to 180 and 250) and with port plate 107 (size 355), the valve is mounted directly on the fixed motor.
- Cracking pressure of pressure retaining valve(observe when setting the primary valve)

Sizes 45 to 355, fixed setting.....16 bar

- **D** Switching pressure of flushing piston $\triangle P$
- Sizes 45 to 355.....8±1 bar
- Schematic

- Flushing flow q_v
- Orifice (throttles with integrated valve) can be used to set the flushing flows as required.
- **4** P_{ND} = low pressure P_G = case pressure
- Standard flushing flows
- □ Flushing and boost pressure valve, mounted

Size	flushing flows q _v l/min	Throttle Φ mm
45	3.5	1.2
107, 125	5	1.8
160, 180	8	2.0
250	10	2.0
355	10	2.5

- With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 l/min. For other flushing flows, please state the required flushing flow when ordering.
- The flushing flow without orifice is approx. 12 to 14 I at low pressure $ightarrow P_{ND}$ = 25 bar.
- □ Flushing and boost pressure valve, integrated

Size	flushing flows q _v l/min	Throttle Φ mm
56, 63	6	1.5
80, 90	7.3	1.8

Attachment

- Pressure-relief valve
- The pressure-relief valves protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the highpressure side to the lowpressure side.
- The pressure-relief valves are only available in combination with port plates 181,191 or 192 (counterbalance valve for mounting to port plate 181)
- □ Cracking pressure setting range......50 to 420 bar
- With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St}
- □ When ordering, please state in plain text
- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)
- Schematic
- □ Version without pressure boost facility [191]

□ Version with pressure boost facility [192]

Dimensions in mm

Attachment

Pressure-relief valve

1-1/4"

1-1/4"

Dimensions in mm

Size	Code	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB16	209	186	25	68	174	102	87	36	66	50.8	23.8	Ф19	M10 deep 17
45	MHDB16	222	198	22	65	187	113	98	36	66	50.8	23.8	Ф19	M10 deep 17
56, 63	MHDB22	250	222	19	61	208	124	105	42	75	50.8	23.8	Ф19	M10 deep 13
80, 90	MHDB22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	Ф25	M12 deep 18
107, 125	MHDB32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	Ф32	M14 deep 19
160, 180	MHDB32	332	301	5	47	285	170	149	53	84	66.7	31.8	Ф32	M14 deep 19
Size	Port A,B	S ₁ ¹⁾			M _A , M	B ¹⁾		P _{St} ¹⁾						
28, 32	3/4"	M22 x	1.5 deep	14	M20 x	1.5 deep	o 14	G1/4"						
45	3/4"	M22 x	1.5 deep	14	M20 x	1.5 deep	o 14	G1/4"						
56, 63	3/4"	M26 x	1.5 deep	16	M26 x	M26 x 1.5 deep 16		G1/4"			pressure boost facility "192"			
80, 90	1"	M26 x	1.5 deep	16	M26 x	M26 x 1.5 deep 16 G1/4"			The lock nut must be counterheld when installing the hydraulic line at the pst port					
107 125	1 1/4"	M26 v	1 E door	16	Mag									

160, 180 M26 x 1.5 deep 16 M30 x 1.5 deep 16 Assembly instruction for port plate with pressure boost facility "192": The lock nut must be counterheld when installing the hydraulic line at the pst port ! 4

M26 x 1.5 deep 16

Ports

107, 125

Ports	Port for	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State 3)
А, В	Working port	SAE J518	See above	450	0
S ₁	Supply port (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure port	DIN 3852	See above	450	Х
P _{St}	Pilot pressure port (only with port plate 192)	DIN/ISO 228	See above	30	0

G1/4"

G1/4"

Note

1) For the maximum tightening torques the general instructions must be observed.

3) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

M26 x 1.5 deep 16

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

■ Counterbalance valve BVD and BVE

- Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.
- If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar
- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. ordering example HD-A2FE90/61W - VAB188 + BVD20F27S/41B - V03K16D0400S12

- Note
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve and BVE counterbalance valve.
- For the design of the brake release valve, we must know for the mechanical park brake
- ♣ the pressure at the start of opening
- the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
- the required closing time for a warm device (oil viscosity approx.
 15 mm²/s)

Technical Data

Permissible input flow or pressure in operation with DBV and BVD/BE

Motor	Without valve		Restricted va	lues in operati	ion with DBV		Restricted va	ues in operati	ion with BVD/I	BVE
HD-A2FE	Pnom/Pmax	Q _{v max}	DBV	Pnom/Pmax	q _v	Plate	BVD/BVE	Pnom/Pmax	q _v	Plate
Size	bar	l/min	size	bar	l/min	Code	size	bar	l/min	Code
28	400/450	176	16	350/420	100	181	20	350/420	100	188
32		201				191, 192	BVD			
45		255								
56		280	22		240				220	
63		315								
80		360								
90		405								
107		427				171				178
125		500				191, 192				
107		427	32		400	181	25		320	188
125		500				191, 192	BVD/BVE			
160		577								
180		648								

■ Counterbalance valve BVD and BVE

Dimensions in mm

□ 尺寸数据(mm)

A2FM	Counterbalance valve		Dimensions in mm							
Size	Туре	Port A, B	B1	B2	B3	B4(S)	B4(L)	B5	B6	B7
28, 32	BVD2016	3/4"	209	175	174	142	147	139	98	66
45	BVD2016	3/4"	222	196	187	142	147	139	98	66
56, 63	BVD2017	3/4"	250	197	208	142	147	139	98	75
80, 90	BVD2027	1"	271	207	229	142	147	139	98	75
107, 125	BVD2028	1"	298	238	251	142	147	139	98	84
107, 125	BVD2538	1-1/4"	298	239	251	158	163	175	120.5	84
160, 180	BVD2538	1-1/4"	332	260	285	158	163	175	120.5	84
107, 125	BVE2538	1-1/4"	298	240	251	167	172	214	137	84
160, 180	BVE2538	1-1/4"	332	260	285	167	172	214	137	84
250				On r	equest					

Ports

Ports	Port for	Version	Standard	Size ¹⁾	P _{Max} [bar] ²⁾	State ⁴⁾
А, В	Working port		SAE J518	See above	420	0
S	Infeed	BVD20	DIN 3852 3)	M22 x 1.5 deep 14	30	х
		BVD25, BVE25	DIN 3852 3)	M27 x 2 deep 16	30	х
Br	Brake release, reduce high pressure	L	DIN 3852 3)	M12 x 1.5 deep 12.5	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 3)	M12 x 1.5 deep 12.5	420	х
M _A , M _B	Measuring pressure A, B		ISO 6149 ³⁾	M12 x 1.5 deep 12	420	Х

Note

1) For the maximum tightening torques the general instructions must be observed.

2) Momentary pressure spikes may occur depending on the application.

Keep this in mind when selecting measuring devices and fittings.

3) The spot face can be deeper than specified in the appropriate standard

4) O = Must be connected (plugged on delivery) X = plugged (in normal operation)

Attachment

Counterbalance valve BVD and BVE

- When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws.
- The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws
 6 screws (1, 2, 3, 4, 5, 8)..... length B1+B2+B3
 2 screws (6, 7).....length B3+B4
- Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme)
- In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table)

Thread	Strength class	Tightening torque	
M6 x 1 tacking screw	10.9	15.5 Nm	
M10 x 1.5	10.9	75 Nm	
M12 x 1.75	10.9	130 Nm	
M14 x 2	10.9	205 Nm	

A2FM	28,32	56,63	80,90	107,125	107,125
Size	45			160,180	
Port plate	18	17			
B1 ¹⁾	M10x1.5	M10x1.5	M12x1.75	M14x2	M12x1.75
	deep 17	deep 17	deep 18	deep 19	deep 17
B2	78 ²⁾	68	68	85	68
B3	-	-	-	-	-
B4	M10x1.5	M10x1.5	M12x1.75	M14x2	M12x1.75
	deep 15	deep 15	deep 16	deep 19	deep 17

1) Minimum required thread reach 1 x Φ -thread

2) Including sandwich plate

Installation drawing

HD HD View Y View Y SAE flange

Attachment

- Speed sensors
- The versions A2FE...U and A2FE...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.
- On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.
- With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated. The sensors measures the speed and direction of rotation.
- Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.
- Installation
- □ The sensor is mounted on the port provided for this purpose with a mounting bolt.
- We recommend ordering the A2FE plug-in motor complete with sensor mounted.

Technical Data

Size			28,32	45	56,63	80,90	107,125	160,180
Number of teeth		38	45	47	53	59	67	
DSA	А	$depth_{\pm 0.1}$	32	32	32	32	32	32
	В	surface	66	-				
	С		-					
	D		12.3	-				

- Installation drawing
- □ Version "H"...Sizes 250 with HDD sensor

□ Version "V" ...Sizes 28 to 180 with DSA sensor

Section A-A rotated

Installation instructions

General

- During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.
- Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.
- The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T₁, T₂).
- For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.
- To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.
- In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level.
- Installation position
- See the following examples 1 to 5
- Additional installation positions are available upon request.
- Recommended installation positions1 and 2

Note

Ins.Position	1	2	3	4	5	6
Air bleed	-	-	-	L ₁	L ₁	L ₁
Filling	T ₁	$T_{1,}T_{2}$	T ₁	T ₁ (L ₁)	T ₁ (L ₁)	T ₂ (L ₁)

L₁ Case drain port

- $T_1, T_2 \qquad \text{Drain port} \\$
- h_{t min} Minimum necessary immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bottom (100 mm)

Mark

- 1) Standard for sizes 250 and 355, special version for sizes 28 to 180
- 2) Piping suggestion without port T2 (standard for sizes 28 to 180).
- Piping suggestion with port T2 (standard for sizes 250 to 355, special version for sizes 28 to 180).
- Installation position only permissible if port T2 is fitted (standard for sizes 250 and 355, special version for sizes 28 to 180)

- Below-reservoir installation (standard)
- Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

- Above-reservoir installation
- Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

HD-A2FO/M/E Axial Piston Fixed Pump/Motor

Technical Information

Hydraulic fluid

- D Before starting project planning, please refer to our data sheets mineral oil and environmentally acceptable hydraulic fluids for detailed information regarding the choice of hydraulic fluid and application conditions.
- When using environmentally acceptable hydraulic fluids, the limitations regarding technical data and seals must be observed. Please contact us. When ordering, indicate the hydraulic fluid that is to be used.
- Notes on the choice of hydraulic fluid
- In order to select the correct hydraulic fluid, it is necessary to know the operating temperature in the reservoir (open circuit) in relation to the ambient temperature.
- The hydraulic fluid should be selected so that within the operating temperature range, the viscosity lies within the optimum range (nopt), see shaded section of the selection diagram. We recommend to select the higher viscosity grade in each case.
- Example: at an ambient temperature of X °C the operating temperature is 60°C. In the optimum operating viscosity range (Vopt; shaded area) this corresponds to viscosity grades VG 46 resp. VG 68; VG 68 should be selected.

- Important
- The case drain temperature is influenced by pressure and input speed and is always higher than the reservoir temperature. However, at no point in the component may the temperature exceed 90°C. The temperature difference specified on the left is to be taken into account when determining the viscosity in the bearing.
- □ If the above conditions cannot be met, due to extreme operating parameters please contact us.
- Filtration of the hydraulic fluid
- □ The finer the filtration the better the cleanliness level of the hydraulic fluid and the longer the service life of the axial piston unit.
- In order to guarantee the functional reliability of the axial piston unit it is necessary to carry out a gravimetric evaluation of the hydraulic fluid to determine the particle contamination and the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 must be maintained.
- □ At very high hydraulic fluid temperatures (90°C to maximum 115°C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.
- □ If the above cleanliness levels cannot be maintained, contact us.

2) Version EA10VSO...-P (if operating with HFA, HFB and HFC hydraulic fluids)

	Viscosity	Shaft seal	Temperature ³⁾	Comment
Cold start	$V_{max} \leq 1600 \text{ mm}^2/\text{s}$	NBR ²⁾	$\theta_{St} \geqslant -40^{\circ}C$	t <3 min, without load (P < 50 bar) n<1000 rpm
		FKM	$\theta_{\text{St}} \geqslant$ -25°C	Permissible temperature difference between axial piston unit
				and hydraulic fluid in the system maximum 25 K
Warm-up phase	$V = 1600 \sim 400 \text{ mm}^2/\text{s}$			$t \leqslant \! 15 \text{ min}, \! P \! \leqslant \! 0.7 \! \ast \! P_{nom} \text{and} n \leqslant \! 0.5 \! \ast \! n_{nom}$
Continuous	$V = 400 \sim 10 \text{ mm}^2/\text{s}^{1)}$	NBR ²⁾	θ= +85°C	measured at port L, L ₁
operation		FKM	T = +110°C	
	$V = 36 \sim 16 \text{ mm}^2/\text{s}$			Range of optimum operating viscosity and efciency
Short-term	$V = 10 \sim 7 \text{ mm}^2/\text{s}$	NBR ²⁾	θ = +85°C	t \leq 3 min,P \leq 0.3 * P _{nom} measured at port L, L ₁
operation		FKM	θ = +110°C	

Viscosity and temperature of hydraulic fluids

1) Corresponds e.g. for VG 46 to a temperature range of ± 4 °C to ± 85 °C (see selection diagram) 3) If the temperature at extreme operating parameters cannot be adhered to, please contact us

Selection diagram

Maximum permissible viscosity for cold start

HD-A2FO/M/E Axial Piston Fixed Pump/Motor

- General instructions
- The pump HD-A2FO is designed to be used in open circuits. The motor HD-A2FM/E is designed to be used in open and closed circuits.
- □ The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e.g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports
- The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
- The service line ports and function ports can only be used to accommodate hydraulic lines.
- □ The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.

- The following tightening torques apply
- Fittings
- Observe the manufacturer's instructions regarding tightening torques of the fittings used
- Mounting bolts
- For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
- Female threads in the axial piston unit
- The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs
- For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports tightening torques

Ports		Maximum permissible	Required	hexagon socket in the						
		tightening torque of the	tightening torque of the	threaded plugs						
Standard	Size of thread	female threads M _{Gmax}	threaded plugs M _v ¹⁾	WAF						
DIN 3852	M8 x 1	10 Nm	7 Nm	3 mm						
	M10 x 1	30 Nm	12 Nm	5 mm						
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm						
	M14 x 1.5	80 Nm	35 Nm	6 mm						
	M16 x 1.5	100 Nm	50 Nm	8 mm						
	M18 x 1.5	140 Nm	60 Nm	8 mm						
	M22 x 1.5	210 Nm	80 Nm	10 mm						
	M26 x 1.5	230 Nm	120 Nm	12 mm						
	M27 x 2	330 Nm	135 Nm	12 mm						
	M33 x 2	540 Nm	225 Nm	17 mm						
	M42 x 2	720 Nm	360 Nm	22 mm						
DIN ISO 228	G1/4"	40 Nm	-	-						

Note

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

2) In the "lightly oiled" state, the MV is reduced to 10 Nm for M10 x 1 and 17 Nm for M12 x 1.5.